skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Etnyre, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We give a classification of Legendrian torus links. Along the way, we give the first classification of infinite families of Legendrian links where some smooth symmetries of the link cannot be realized by Legendrian isotopies. We also give the first family of links that are non-destabilizable but do not have maximal \tb invariant and observe a curious distribution of Legendrian torus knots that can be realized as the components of a Legendrian torus link. This classification of Legendrian torus links leads to a classification of transversal torus links. We also give a classification of Legendrian and transversal cable links of knot types that are uniformly thick and Legendrian simple. Here we see some similarities with the classification of Legendrian torus links, but also some differences. In particular, we show that there are Legendrian representatives of cable links of any uniformly thick knot type for which no symmetries of the components can be realized by a Legendrian isotopy, others where only cyclic permutations of the components can be realized, and yet others where all smooth symmetries are realizable. 
    more » « less
  2. It is known that any contact $$3$$-manifold can be obtained by rationally contact Dehn surgery along a Legendrian link $$L$$ in the standard tight contact $$3$$-sphere. We define and study various versions of contact surgery numbers, the minimal number of components of a surgery link $$L$$ describing a given contact $$3$$-manifold under consideration. In the first part of the paper, we relate contact surgery numbers to other invariants in terms of various inequalities. In particular, we show that the contact surgery number of a contact manifold is bounded from above by the topological surgery number of the underlying topological manifold plus three. In the second part, we compute contact surgery numbers of all contact structures on the $$3$$-sphere. Moreover, we completely classify the contact structures with contact surgery number one on $$S^1\times S^2$$, the Poincar\'e homology sphere and the Brieskorn sphere $$\Sigma(2,3,7)$$. We conclude that there exist infinitely many non-isotopic contact structures on each of the above manifolds which cannot be obtained by a single rational contact surgery from the standard tight contact $$3$$-sphere. We further obtain results for the $$3$$-torus and lens spaces. As one ingredient of the proofs of the above results we generalize computations of the homotopical invariants of contact structures to contact surgeries with more general surgery coefficients which might be of independent interest. 
    more » « less
  3. We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifold with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifold that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold. 
    more » « less